Linking National Forest Inventory measurements with land cover and habitat datasets to quantify carbon sequestration in Finnish Forest Lapland

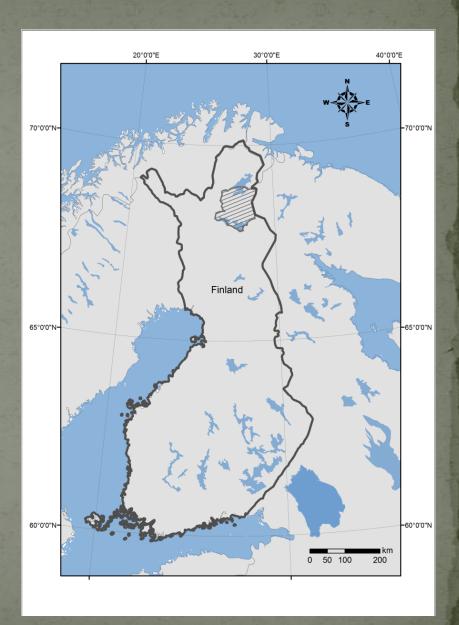
Laura Mononen^{a*}, Timo Kumpula^a, Teppo Repo^a, Petteri Vihervaara^b, Kari T. Korhonen, K. T.^c & Antti Ihalainen^c

^a Department of Geography and Historical Studies, University of Eastern Finland, 80101 Joensuu, Finland

^b Finnish Environment Institute, P.O.Box 111, 80101 Joensuu, Finland

^c The Finnish Forest Research Institute, 80101 Joensuu, Finland

*Laura.Mononen@uef.fi



What & why?

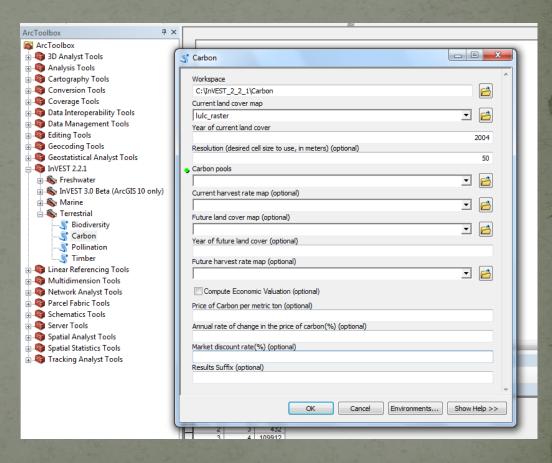
- Goal of this research is to identify important forest types for carbon sequestration and evaluate how changes in land use would affect to carbon sequestration and possibly other ecosystem services [ES]
- This is important as in land use planning not all ecosystem benefits aren't acknowledged
 - Important to take ecosystem services to environmetal impact assessments to prevent losing essential ESs
- Why carbon?
 - Carbon sequestration is probably seen as the most important ES that forest ecosystem can provide.

Research area

- Research area in Finnish Forest Lapland vegetation zone
- Finnish Forest Lapland has gone through many land use disputes
 - Forestry, conservation, tourism, reindeer herding, residents, hikers, gold diggers, mining
- •Many times economical interests overtake the others

Data

- NFI data of biomass values calculated in sample plots in Finnish forest Lapland
 - Habitat
 - Heathland
 - Woodland
 - Mesic/Sub-xeric/Xeric heath forests
 - Schrub land
 - Peatland
 - Woodland

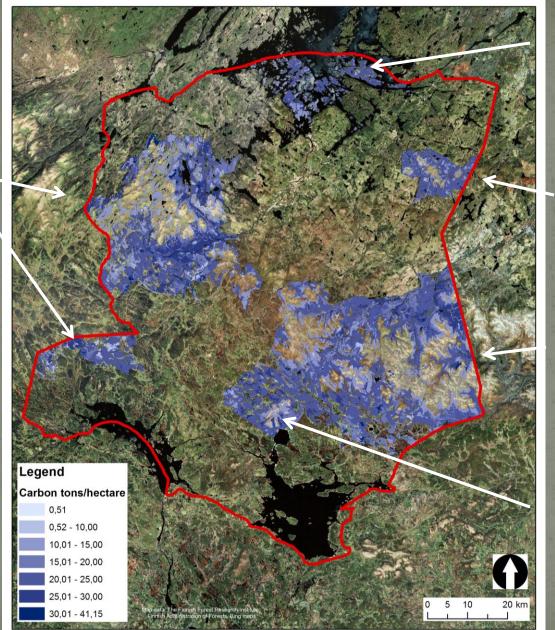

pine swamp/spruce swamp

- Schrub land
- Five development class (clear cut-old growth forests)
- Dominating tree species pine/spruce/hardwood/mixed (>75 %)
- SutiGIS, biotope data from Finnish Forest Administration (Metsähallitus)
 - Done in state owned forests by using aerial photograps of 1 m resolution
 - Vector format
- Data is now combined and the most carbon rich areas can be identified on a map

Methods

natural capital

- InVEST modeling tool (version 2.2.1)
 - To see how different scenarios in land use would affect different types of forests
 - Eg. possibilities to apply future land use maps, harvest rate maps, carbon pools
 - InVEST not only to model carbon

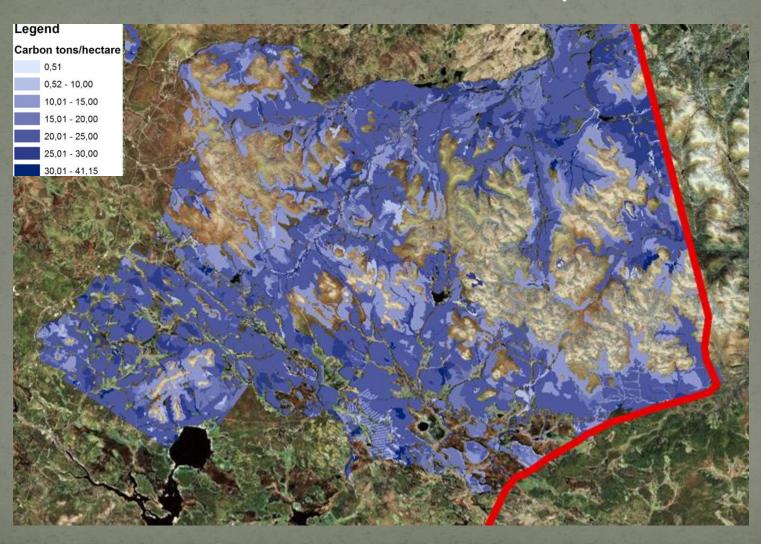

Preliminary results

• So far:

Most significant forest types in the study area	Carbon (Mt)	Area (km2)	Carbon (t/ha)
Pine forest, 40-60 yrs (Sub-xeric heath forest)	1,55	634,08	24,38
Pine forest, +60 yrs	0,55	183,48	29,72
Mixed forest, 40-60 yrs (Sub-xeric heath forest)	0,50	211,98	23,37
Hardwood forest, 20-40 yrs (Sub-xeric heath forest)	0,34	317,73	10,67
Pine forest, 40-60 yrs (Xeric heath forest)	0,29	152,21	18,8
(40 classes in total)	Total 4,55	Total 2220,05	Average 18,62

Most carbon rich forest types	Carbon (t)	Area (km2)	Carbon (t/ha)
Mixed forest, +60 yrs (peatland forest)	18054,15	4,39	41,15
Hardwood forest, +60 yrs	119055,51	37,80	31,5
Spruce forest (+60 yrs) (peatland forest)	3637,46	1,21	29,97
Pine forest, +60 yrs	545314,45	183,48	29,72
Pine forest, 40-60 yrs (Mesic heath forest)	25257,46	8,72	28,96

Hammastunturi wilderness area


Archipelargo of Inarijärvi

Tsarmitunturi wilderness

UKK national park

Sompio Strict Nature Reserve

Urho Kekkosen kansallispuisto

What next?

- Intentions to add soil carbon values to get the total sequestrated carbon
- Improvement the accuracy of combined data
- Apply InVEST to see what happens to carbon sequestration in different land use scenarios
- Manuscript

Thank you for your attention!

Contacts: laura.mononen@uef.fi